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POLYMER MODELING IN INDUSTRY

Jozef Bicerano, Ph.D.
Bicerano & Associates, LLC

For further details on most of the work summarized in these 
slides, see J. Bicerano, S. Balijepalli, A. Doufas, V. Ginzburg,
J. Moore, M. Somasi, S. Somasi, J. Storer and T. Verbrugge, 

“Polymer Modeling at The Dow Chemical Company”,              
J. Macromol. Sci.-Polymer Reviews, 44, 53-85, 2004. 
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INTEGRATED MODELING APPROACH

 New product and/or process development in industry requires 
attention to many (and often contradictory) considerations:
 Formulation design.
 Raw material costs.
 Processing costs.
 Product performance targets.
 Market trends.
 Governmental regulations.  

 A multidisciplinary and integrated modeling approach is desirable 
since the relevant materials science encompasses many phenomena.
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“Holy Grail”: Multiscale Modeling Paradigm

Chemical structures of system components 
(polymers, molecular fluids, surfactants, fillers, etc.)

Modeling at molecular scale 
(QSPR, atomistic simulations)

Binary interaction parameters (Flory-Huggins or its 
analogues) between all distinct pairs of system components

Modeling at mesoscale (self-consistent mean field theory 
for thermodynamic equilibrium; mesoscale dynamic 

simulations for evolution as a function of time)

Phase diagrams, interfacial tensions, phase inversion points, 
model-generated three-dimensional snapshots of morphology as a 
function of time and of thermodynamic equilibrium morphology

Modeling at the macroscale (computational 
fluid dynamics, solid mechanics)

Understanding and predictions of bulk sample behavior 
(morphological stability, flow characteristics, physical 

and mechanical properties)
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BRIEF REVIEWS OF SELECTED PROJECTS

 Mechanical properties of thermoplastics (Jonathan Moore).

 Polymer/clay nanocomposites (Valeriy Ginzburg).

 Polyol templating (Sudhakar Balijepalli).

 Flow-induced crystallization and polymer process modeling (Antonios 
Doufas and Madan Somasi).

 High-throughput polymer design (Sweta Somasi and Jozef Bicerano).

 Controlled release of drugs from hydrophilic polymers (Sweta Somasi, Irina 
Graf, Steve Ceplecha, Daniel Simmons and Jozef Bicerano).

 Branched/network polymer structures (Tom Verbrugge).

 Water vapor transport in a polymer matrix composite (Joey Storer, Jozef 
Bicerano and Dave Moll).
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MODELING MECHANICAL PROPERTIES
OF THERMOPLASTIC POLYMERS

The basic goal is to relate material properties 
to their origins in microscopic phenomena
and to their influence on the performance of 
products in end-use applications.

Mechanical 
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Physical Picture for Glassy Thermoplastic Polymers

 A mosaic of nanoscale clusters:
 Distribution of differing cluster 

viscoelastic characteristics.
 Fluctuations of the Eyring-type 

activation energy for yielding 
induce dynamic inhomogeneities.

 “Locally yielded” regions that no 
longer respond elastically (solid 
black clusters) become more 
abundant with increasing strain.
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Distribution of Yield Characteristics Related to d/d

233 < T (K) < 338

1.6x10-3 < 
strain rate (sec-1) 

< 1.6x10-1

Bisphenol-A 
polycarbonate

MFR ~ 10
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Strain Rate and Temperature Dependences

Dashed lines are calculated.
Solid lines are experimental data.
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Thermoplastic Mechanical Property Modeling Summary

 The model requires three stress-strain curves as input for calibration.

 It captures the stress-strain curves up to yield accurately at different 
rates and temperatures for bisphenol-A polycarbonate. 

 Limited testing suggests that it works well for other glassy polymers, 
such as ABS, PC/ABS, and HIPS.

 It also provides insights into the fundamental issue of glass-former 
"fragility" in the glassy state and a practical means to assess dynamic 
inhomogeneities in polymeric glasses.

 For further details, see J. Moore, M. Mazor, S. Mudrich, J. Bicerano, 
A. Patashinski and M. Ratner, ANTEC ’02 Preprints, Society of 
Plastics Engineers, 1961-1965 (2002).
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MULTISCALE MODELING OF
POLYMER/CLAY NANOCOMPOSITES

SCFT
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interactions

Clay aspect ratio,
organoclay loading
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Phase 
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Dispersing Unmodified (Virgin) Clay in Polymer:
• Calculate polymer-induced clay-clay interactions:

Entropy -- polymer pushed out
Enthalpy -- polymer pulled in

• Enthalpy needs to dominate
• Best way -- use polar head group 

(such as MaPP for PP/clay hybrids)

For Success With Organically Modified Clays:
• Organic modifier chains should be sufficiently long.
• Organic modifier and polymer should be miscible.
• Polymer should be attracted to clay surface.

Vaia and Giannelis, Macromolecules, 30, 7990-7999 (1997).
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Modeling Clay Intercalation or Exfoliation:
Mean-Field Theory of Polymers in the Galleries
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Modeling Clay Dispersion Morphology

 Clay surface coverage and organoclay loading determine the equilibrium 
morphology, but in practice the morphology is often non-equilibrium.

 Morphology can be deduced experimentally from WAXS, SAXS and TEM.
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Ginzburg and Balazs, Adv. Mater., 12, 1805-1809 (2000).
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Verifying Dispersion Morphology Using WAXS

 XRD fitting model can determine degree of exfoliation in clay dispersions.
 Results in qualitative agreement with transmission electron micrographs.
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Calculations based on a model by Vaia and Liu, Polymeric Materials: Science & Engineering, 85, 14-15 (2001).
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Predicting Mechanical Properties of 
Nanocomposites Using Finite Element Models

 Young’s modulus depends strongly on extents of platelet exfoliation and alignment.
 Similar methods are applicable to predicting other properties. 

• For randomly oriented disks, 
no significant dependence of 

Young’s modulus on exfoliation.

• For aligned disks, in-plane 
modulus improves with 
increased exfoliation.

See also: D. A. Brune and J. Bicerano, 
Polymer, 43, 369-387 (2002), where
closed-form equations were used to
model more idealized morphologies.1.0
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Nanocomposite Modeling Summary

 Implemented multiscale modeling framework relating 
properties of nanocomposites to their formulations:
 Polymer/Clay Miscibility -- Mean-Field Theory of Polymers.
 Phase Behavior of Dispersions -- DFT of Colloids.
 Morphology Verification -- XRD Analysis and Modeling.
 Property Prediction -- Finite Element Analysis.

 Modeling framework was applied successfully to:
 Design compatibilizer formulations to improve clay dispersion 

in aqueous and other solutions, as well as in polymer melts.
 Estimate mechanical properties of specific nanocomposites.
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POLYOL TEMPLATING

 Predict phase diagram, 
including transitions.

 Many applications in 
nanotechnology.



August 13, 2004 18

Assumptions in Lattice Mean-Field Model
(developed by Per Linse et al., Lund University)

 Space divided into equal-sized lattice sites in two dimensions.

 One species per lattice site.

 Flexible polymers.

 Mean-field approximation, with nearest neighbor interactions 
accounted for via Flory-Huggins interaction () parameters.

 Aqueous solutions of PEO and PPO homopolymers display a 
lower critical solution temperature. 

 EO and PO segments are each modeled in terms of “polar” 
and “apolar” internal states.
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Main Features of Phase Diagram for 
an AB-EO Triblock / Water System

 Lyotropic Phase Transitions:
Caused by concentration 
changes (for example, H1  L

as polymer is increased).

 Thermotropic Phase Transitions:
Caused by temperature changes 
(for example, H1  L  I2 as 
T is increased).
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hydrophobic hydrophilic

Intermediate temperature

hydrophobic hydrophilic

High temperature
hydrophobic hydrophilic

Low temperature

Thermotropic Behavior From Increasing 
Effective Hydrophobicity With Temperature

 Water-continuous phases with 
high curvature dominate.

 Lamellar phase is narrow.
 No stable “reverse” (polymer-

continuous) phase is found.

 Lamellar phase is stable.

 “Reverse” (polymer-continuous) 
phases become more stable.
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Block Length Effects on Thermotropic Transitions

Increasing the 
EO block length 
extends the 
temperature
stability of ordered 
phases and favors
water-continuous 
phases.
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Polyol Templating Summary

 Lattice mean-field theory was used to predict the lyotropic and 
thermotropic phase transitions of polyol surfactants with water, as 
functions of chemical composition, block length and concentration.

 This work is discussed in greater detail in several publications:
 N. P. Shusharina, S. Balijepalli, H. J. M. Grünbauer and P. Alexandridis, 

ACS Polymer Preprints, 43(2), 354-355 (2002).
 N. P. Shusharina, P. Alexandridis, P. Linse, S. Balijepalli and H. J. M. 

Grünbauer, Eur. Phys. Jour. E, 10, 45-54 (2003).
 N. P. Shusharina, S. Balijepalli, H. J. M. Grünbauer and P. Alexandridis, 

Langmuir, 19, 4483-4492 (2003). 
 P. Alexandridis, N. P. Shusharina, K.-T. Yong, K.-K. Chain, S. Balijepalli 

and H. J. M. Grünbauer, ACS Polymer Preprints, 44(2), 218-219 (2003). 
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MICROSTRUCTURAL / CONSTITUTIVE
FLOW-INDUCED CRYSTALLIZATION MODEL

Rc = <RR>

Amorphous phase
Semi-crystalline phase 
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Rigid rods (with anisotropic drag) that orient and 
grow at the expense of flexible portions of chains.

Flexible molecules, represented here as non-linear
elastic dumbbells with finite extensibility (Peterlin 
approximation to get closed form equation).

Model
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Modeling Fiber Spinning and Film Blowing Processes

Spinneret
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Fiber Spinning Film Blowing

Must solve the coupled
mass, momentum and

energy conservation and
constitutive/crystallization

equations numerically.
Frost line
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Fiber Spinning Model Validation
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The model predictions are in good agreement with high-speed spinning data for the 
velocity, diameter (necking), temperature, and flow birefringence of Nylon and PET.
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Linear Stability Analysis for Fiber Spinning

Eigenspectrum for two 
different take-up speeds

Stress disturbance evolution at end of 
spinline at most dominant eigenvalue
for the two take-up speeds
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To predict the onset and evolution of instabilities (draw resonance), the system of 
equations is linearized around the steady state and the time evolution of prescribed 
disturbances is monitored. This evolution is dictated by the eigenvalues of the system.
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Blown Film Model Validation
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Prediction of bubble velocity and temperature profiles

The model can predict film velocity and temperature profiles accurately 
and capture the plateau of the film temperature due to crystallization.
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Blown Film Model Validation (continued)
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August 13, 2004 29

Flow-Induced Crystallization Modeling Summary

 Model is mesoscopically-based, applicable to a variety of kinematics 
(uniaxial or biaxial extension, shear), and able to simulate polymer 
processes of great industrial and academic interest quantitatively.

 Predicts necking and the associated softening (decrease of the extensional 
viscosity at high draw ratios) behavior in fiber spinning for the first time.

 Predicts stresses in and microstructures of fibers and films at the freeze 
point, which are closely related to the mechanical and physical properties.

 Predicts effects of fabrication conditions and molecular architecture on 
draw resonance during non-isothermal fiber spinning.

 Predicts rheometric data (such as Meissner, Rheotens, shear) in absence 
of crystallization. 

 See the many publications of Doufas et al. for further details.
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HIGH-THROUGHPUT POLYMER DESIGN

 The approach attempted at Dow was based on J. Bicerano, Prediction of Polymer 
Properties, third edition, Marcel Dekker, New York (2002), as implemented in the 
SYNTHIA software module marketed by Accelrys, Inc.

Researcher guesses some 
candidate repeat units that 
may perhaps give polymers 
satisfying performance 
criteria for target application.

Properties are predicted to 
select the best candidates for 
synthesis, which are limited 
to being just a subset of the 
researcher’s initial guesses.

Conventional “Forward Engineering” Approach

High-throughput (combinatorial) 
methods are used to generate a vast 
“library” of repeat unit structures, 
and properties are predicted for the 
polymers of these repeat units.

The best candidates for synthesis are 
identified from this huge repeat unit 
library, possibly providing attractive 
candidates that the researcher would 
never have thought of.

More Powerful “Reverse Engineering” Approach
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CERIUS2/SYNTHIA Approach

Enter all repeat units and property predictions by using SYNTHIA once into a database

Dow software enumerating all possible repeat unit structures that can be built
containing up to a certain number of the subunits from a “fragment library”

Generate fully extended and optimized repeat unit geometries by using Dow software
for conformational search in combination with CERIUS2 for energy minimization

Search databaseSelection Criteria Selected Candidates

Generate initial repeat unit structures using CERIUS2
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High-Throughput Polymer Design Summary

Enumeration Program  Builds repeat units for CERIUS2
Backbone Program  Changes torsion angles to 180o or 0o

and stores all such conformations
CERIUS2  Minimizes energies of conformations
Compare Program  Compares conformations, finds one 

with maximum extension, saves it
SYNTHIA  Predicts properties at T= 200K to 500K 

for stored conformations, saves output
in database-compatible XML format

Database  Stores conformations and predictions in 
a readily searchable format (work not 
completed on this component of system)

SYNTHIA was endowed with combinatorial modeling capabilities!
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High-Throughput Polymer Design: Work in Progress

 Bicerano & Associates, LLC, is working with DTW 
Associates, Inc., to develop a much more effective new 
modeling approach to high-throughput polymer design.

 This approach will be implemented as a new module 
(HTPD) which will be made commercially available in 
DTW’s Polymer-Design Tools™ suite of software tools.  
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CONTROLLED RELEASE OF DRUGS
FROM HYDROPHILIC POLYMERS

Drug
Filler

Water

HPMC

Dissolution
of polymer

Diffusion of 
water, drug and filler

Swelling of tablet
and formation of gel

• Diffusion of water into tablet.
• Diffusion of drug/filler out of tablet.
• Dissolution of polymer matrix.
• Swelling of tablet as water enters.
• Formation of gel.

Simultaneous Processes:
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Literature Model (Siepmann and Peppas)

Main Advantages:

• Physically reasonable, yet mathematically simple.

• Well tested with different drugs, polymer grades, and release media.

• Parameters which are not drug dependent are published and can be used 
directly, so that only two parameters must be determined by fitting to data.
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User Interface

Graphical 
representation
of experimental 

results and model 
predictions

Interface to 
choose input 

parameters (tablet 
size, loading, etc.)

Interface to 
either input 

values for model
parameters or 
choose them to 

be fitted by 
using a state-of-
the-art particle

swarm optimizer

Standard deviation – to determine goodness of fit.

Can export results to Excel & many other features!
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Results With Siepmann-Peppas Model

Fitted controlled release data for six different drugs of same family (water-soluble
bronchodilators) from a literature reference, from a hydroxypropylmethylcellulose 
matrix (50% drug loading by weight), by using the Siepmann-Peppas model.

The drug diffusivity shows dependence on “cavity surface area” (also known as the 
“solvent-accessible surface area”) of the drug molecules.
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MODELING BRANCHED/NETWORK POLYMERS

 This work is aimed towards understanding the following relations:

 One can then predict industrially important parameters (such as the time to gel, 
critical gel ratio, polymer molecular weight and viscosity buildup).

 One can also gain insights on aspects of branched and/or network architectures 
where analytical tools fail (such as the compositions and sequence distributions of 
the elastic chain segments between crosslinks, dangling ends, loops).

 Most importantly, success in this effort can shorten the product development time 
by providing models to guide the experimental work.

reactant structures
network structure

reaction conditions
network 

properties
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Miller-Macosko
– Recursive Approach
– Extended Capabilities
– ST = sec (DWS)

– Diffusion and Kinetic Controlled
– Most realistic representation
– ST = hour (SGI)

3D-Percolation

ARS & Rate Theory
– Flory-Stockmayer
– Limited Capabilities
– ST = min (SGI)

– Off-space percolation
– Allows 1st and 2nd kinetics
– ST = min - hour (DWS)

DryAdd, DMC Monte Carlo Technique
Detailed information

Long Correlation Effects 

Mean field behavior

Statistical Technique
Mean field behavior
Average Properties

Accelrys Software
Pre-gel Cyclization

Available Theories
Different theories originate from different assumptions about non-ideal behavior.



August 13, 2004 40

Thermoplastic Polyurethane Pultrusion: Process

 Pultrusion is a continuous process where the developing composite is “pulled through” the 
fabrication equipment by a gripper/puller system.  

 Polymer pellets are heated and melted, and fibers are “impregnated” with molten polymer, 
depolymerization at urethane bonds and side reactions being favored in these steps.  

 Subsequent rapid cooling results in polymerization reactions becoming favored again. 
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Thermoplastic Polyurethane Pultrusion: Reactions

-OH + -NCO   -Urethane-

-NCO + -NCO  -NCN- + CO2

-NCO + H2O   -NH2 + CO2

-Urethane-   -NH2 + CH2=CH- + CO2

-NCO + -NH2  -Urea-
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Thermoplastic Polyurethane Pultrusion: Mw Prediction

 Applied temperature profiles (left) all exhibit the same temperature rise and fall rates, but differ in length of 
the plateau that the temperature resides at prior to cooling and that determines the extruder residence time.  

 The assumed reaction mechanism was implemented with the dynamic Monte Carlo method. 
 The starting Mw was ~75 kg/mole, and a shorter residence time was found to favor a higher final Mw. 
 Snapshots of weight distributions of formed polymers at time 25 sec and 85 sec are shown at the right.
 See T. A. M. Verbrugge and C. F. J. den Doelder (to be published) for further details.
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MODELING WATER VAPOR TRANSPORT

 Determine the filler [Linde Type A (LTA) zeolite] loadings needed to 
“activate” a polyolefin/desiccant blend for water vapor transmission.

Schematic Illustration of Initial Morphological Hypothesis Micrograph
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Accessible Volume Calculation

 Compute accessible volume of LTA.
 Assume probe radius r=1.4 Å or 0.75 Å (representing roughly the 

longest and shortest dimensions of a water molecule).
 Use the CERIUS2 crystal library and internal volume calculator.
 Multiply by volume % of LTA loaded into polymer.

Occupiable volume (r=1.4 Å) Accessible Volume (r=1.4 Å)
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Water Vapor Transport Modeling Summary

Percolation Model for LTA
in D2045A at 5% PEG
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 The observed water vapor transmission rates were compared with the 
calculated water-accessible LTA zeolite volume fraction in the blends.

 The sudden onset of water vapor transmission was seen to coincide simply 
with the percolation threshold for water accessibility with a probe radius of 
1.4 Å, without the need to assume the existence of a “channel” morphology. 
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SUMMARY AND CONCLUSIONS

 Polymer modeling has reached the state of maturity where it 
can serve as a powerful component of an industrial R&D 
program on polymer product and process development.

 Such work, at its most effective, attempts to address all of 
the essential formulation, process and product issues within 
a multidisciplinary and multiscale modeling paradigm.

 A few polymer modeling projects from Dow Chemical were 
reviewed to illustrate some of the many types of industrially 
relevant problems that can be solved.


